MicroRNAs 221 and 222 regulate the undifferentiated state in mammalian male germ cells.
نویسندگان
چکیده
Continuity of cycling cell lineages relies on the activities of undifferentiated stem cell-containing subpopulations. Transition to a differentiating state must occur periodically in a fraction of the population to supply mature cells, coincident with maintenance of the undifferentiated state in others to sustain a foundational stem cell pool. At present, molecular mechanisms regulating these activities are poorly defined for most cell lineages. Spermatogenesis is a model process that is supported by an undifferentiated spermatogonial population and transition to a differentiating state involves attained expression of the KIT receptor. We found that impaired function of the X chromosome-clustered microRNAs 221 and 222 (miR-221/222) in mouse undifferentiated spermatogonia induces transition from a KIT(-) to a KIT(+) state and loss of stem cell capacity to regenerate spermatogenesis. Both Kit mRNA and KIT protein abundance are influenced by miR-221/222 function in spermatogonia. Growth factors that promote maintenance of undifferentiated spermatogonia upregulate miR-221/222 expression; whereas exposure to retinoic acid, an inducer of spermatogonial differentiation, downregulates miR-221/222 abundance. Furthermore, undifferentiated spermatogonia overexpressing miR-221/222 are resistant to retinoic acid-induced transition to a KIT(+) state and are incapable of differentiation in vivo. These findings indicate that miR-221/222 plays a crucial role in maintaining the undifferentiated state of mammalian spermatogonia through repression of KIT expression.
منابع مشابه
MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle.
We have recently reported that MicroRNAs (miR)-221 and miR-222 were up-regulated in human thyroid papillary carcinomas in comparison with the normal thyroid tissue. Bioinformatic analysis proposed the p27(Kip1) protein, a key regulator of cell cycle, as a candidate target for the miR-221/222 cluster. Here, we report that the enforced expression of miR-221 and miR-222 was able to reduce p27(Kip1...
متن کاملThe expression profile for KIT in male germ cells (present in prospermatogonial precursors, suppressed in undifferentiated spermatogonia and subsequently induced upon transition to a differentiating state) suggests silencing by small RNAs. Mounting evidence indicates small non-coding RNAs, such as microRNAs
INTRODUCTION Male fertility requires continual spermatogenesis, a process dependent on activities of an undifferentiated spermatogonial population composed of spermatogonial stem cells (SSCs) and transient amplifying progenitor spermatogonia (de Rooij and Russell, 2000; Oatley and Brinster, 2012). Self-renewal of SSCs maintains a constant pool from which progenitors will arise and amplify in nu...
متن کاملMicroRNA-221-222 regulate the cell cycle in mast cells.
MicroRNAs (miRNAs) constitute a large family of small noncoding RNAs that have emerged as key posttranscriptional regulators in a wide variety of organisms. Because any one miRNA can potentially regulate expression of a distinct set of genes, differential miRNA expression can shape the repertoire of proteins that are actually expressed during development and differentiation or disease. Here, we...
متن کاملPotential Value of miR-221/222 as Diagnostic, Prognostic, and Therapeutic Biomarkers for Diseases
microRNAs (miRNAs) are short non-coding RNAs that regulate gene expression by base pairing with their target messenger RNAs. Dysregulation of miRNAs is involved in the pathological initiation and progression of many human diseases. miR-221 and miR-222 (miR-221/222) are two highly homologous miRNAs, and they are significantly overexpressed in several types of human diseases. Silencing miR-221/22...
متن کاملmiR-221/222 promote malignant progression of glioma through activation of the Akt pathway.
MicroRNAs (miRNAs) are short regulatory RNAs that negatively modulate protein expression at a post-transcriptional level. Emerging evidence suggests that miRNAs play important roles in the pathogenesis of several types of cancers. However, the further mechanisms of miRNA remain unknown. In this study, we aimed to explore the coordinated function of miR-221/222 in glioma by bioinformatics and ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 140 2 شماره
صفحات -
تاریخ انتشار 2013